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Abstract

It is proved that a nondegenerate diffusion process in the
closed half space i= {xc : xI -01, where dz2, with

Wentzell's boundary conditions does not hit any specified
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It is known that a Brownian motion in the unit sphere, with normal

reflection at the boundary, does not hit a specified point on the boundar

(see McKean (1969)). The aim of this article is to prove that a non-degen-

eratc diffusion in the closed half space, with certain Wentzell-type bound-

ary conditions, does not hit a point on the boundary specified in advance.

We also give an application to a boundary value problem. \

Let G = {x=(xl,...I Xd) x I >01, ac = {x ER : x l = and G=Gu G,

where d > 2. We have the coefficients a,b defined on G, and a,y,p defined

on 36, satisfying one of the following two sets of conditions.

Conditions I. (1I ) For each xcG, a(x) = ((ai 3(x)))l1 ,j: d  is a dxd

real symmetric positive definite matrix; a(-) is bounded and continuous;

-1 .
a (-) is also bounded and continuous.

(I 2) b(*) = (bl(*),..., bd(-)) is a bounded and continuous JR -valued

function on C.

(I 3) Y(*) = (y2 (),-.., Yd()) is an R d - l-valued function on 3G;

* C 2Cb(aG) for j =2,..., d.

(I 4) a 0 ) as a (d - 1) x (d - 1) matrix.

(I 5) p - 0; or p is a bounded locally Lipschitz function which is strictly

positive at each point of 3G.

The set of alternative conditions is

Conditions IT. (I 1) In addition to (1 1) we assume that for each X E,

there exists a d x d real symmetric positive definite matrix

((X) = ((oii~x)))l5i,j~d such that a(x) =3(x)o*(x); o(.) is bounded and

continuous, and o() is also bounded and continuous.

(II 2) Same as (I 2).>

e~ 
Sr

. . . . . . . . .. . . . . *, ,. . ....
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2

(II 3) d= (y 2 (),..., d is an R valued bounded and continuous

function on G.

(II 4) For each xc aG, aC(x) = ((a ij (x)))2<i,jsd is a (d-l) x(d-l) real

*,. symmetric positive definite matrix, and there exists a (d -1) x(d -1) real

symmetric positive definite matrix 9(x) = ((a.Ji (x)))~ j~ such that

(x) =o(x)-.*(x). o(') and a (.) are bounded and continuous.

(11 5) Same as (1 5).

Define

d 2 d
-. L ijx xiaxj + b b i~ x ) ax(I

and

a d a2  da
a1 = ( .(x) axax. + Y i(x) a (2)x I i,j= 2 ij I j i=2 2

Let I = C([O,-) G) be endowed with the topology of uniform convergence

*: on compacta and the natural Borel structure.

Under conditions less restrictive than the set of Conditions I, Stroock

and Varadhan (1971) have established the existence of a unique solution to

the submartingale problem corresponding to the coefficients a,b,y,p. Fol-

lowing Watanabe (1971), Nakao and Shiga (1972) have established the existence

of a unique solution to the stochastic differential equation corresponding

to the coefficients a,b,a,y,p under conditions less restrictive than the set

of Conditions 11. The equivalence of these two formulations can be found

in N.B. Karoui (1975). (Here uniqueness is in the sense of law).

So, when Conditions I or II hold, for each xG there exists a unique

probability measure P' on Q such that
X

• °' , • * °• • . . . . . . ... - . .. *, ***• - . ., • .. °

... v.. .-. -. * '* ". "- " w" . "- . "- e "': ' e " . " "% ' ". .~- . '""" e . . . . . """ .'.-" .' ' .. ''""' - " . ' ''*
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1) P {X(t) e for all t>O and X(O) =x} = 1x

t
2) f(X(t)) - f[IG.(Lf)](X(u)) du

0

is a l'-submartingale for any f r Cb2(IR d ) satisfying Jf > 0 on 3G, and where X(t)
xb

denotes the t-th coordinate map on sj; also the process X(tJ is strong Markov

and Feller continuous. Further, there exists a continuous, non-decreasing,

non-anticipating process Qt) on Q such that

t
() (t) = 3IaG(X(u)) dtu) (3a)

0
and

t t
(ii) f(X(t)) - ftl(.;(Lf)](X(u))du- fJf(X(u)dE(u) (3b)

0 0

is a P -martingale for every f c C2(IR )
X b

We shall call the family {P : x iG} the diffusion corresponding to (L,J).
x

We first prove a theorem which effectively reduces the lroblem to the

case of normal reflection; this theorem may be of independent interest. But,

we first need a few lemmas.

m m
Lemma I. Let g: IR - IR be a bounded and continuous function (i.e. image of

g is contained in a compact set). Define g IR m - R m by g1 (x) =x+g(x).

'len g, is onto.

m : n mim
Proof. Let z c JR be fixed. Define h z  R -* JR by h (x) -g(x) +z. Since

range of hz is contained in a compact set, by Brouwer's fixed point theorem,
Inm

there exists xc ER such that hz (x) =x, i.e. z=x+g(x). This shows that g

is onto. [

Lemma 2. Let Conditions I hold. There exists a C 2-diffeomorphism T: G G,

given by (yIY 2, ... yd = T(Zlz 2, ... zd), such that the following hold:

(i) T is identity on 3G.

.-...... ...................,........................................... ...
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Ui) under 1=Yi(Y) -- is transformed to . = 1  on

aG.

(iii) L, given by (1) (in the variables Y1 "'"'' yd), is transformed to

*i a strictly elliptic operator L with bounded coefficients (in the variables

zz, z2 .... Zd) under T- 1 . and L has a representation like (1).
- Proof. By condition (I 1) there exist constants a 0 >0, M>0 such that

lai(x)I5M for all xEG, 1 !li,j !d,

and

a0 = inf{eigenvalues of a(x): xcG}.

We first consider the case when there is a constant such that

-y . 2 a0

Y < - 3(4)Xk .. x 8Md3

For x (x1 , x2 "... xd), let x = (0,x2 ..., xd) Note that by (4), for

x,x 6, we have

IY(x) _ Y(x')1 2  l x - '1 ()

Let A be such that 0 <X < -; let 0 be a smooth function on (-I,-) such that

" is non-decreasing, IJ'1 < 1, and *(v) = v if vs X, and O(v) = X if vX.

Define T: G(-i by

(YIY 2 "' '. Yd = T(z,' 2' Zd)

= (Z1, Z2 " ' '' zd) + P(z ) (O y 2 (z ) ' ' '' Y (z ) (6 )

We claim that T is one-to-one; indeed, let T(zl,z 2 ..., zd

'(zizk,..., zA). By (6), it is clear that zI =z; and hence, =? 4zz))

Therefore z * =( ) = z' + q(zl)Y(z ). Consequently by (5),

- z' = *(zY)Y(Z) -Y')I XVT - < 1- -- 1

'I.

• ... .. .. .,.... . .. .. -. . .-. . . . . .. . . . . .-.. -.. ..-.. ... ... .. .. ,.. .,' ..- -.... 
. . . . . . .-. .'...-......-....,,.. .. .:....--.: .-..- - -...... ,,, ..,
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which is a contradiction unless z=z'. Thus T is 1-1. By Lemma 1, T is onto.

(Actually T is one-one andonto on every {z1 =constant). Since 0(0) =0, it

follows that T is identity on G.

Since T is a bijection, from (6), we may write

(Zlz 2 ... 2 Z d) =  (Y Y2 .' '  Yd)  - 4(Zl)(0'Y2 (z)' ... Yd( ))

= (yly 2,..., y - (Y O, 2(y), .... d(y)) (7)

where 0 (y) = yjz(y)), with z expressed as a function of y.

Since y.'s are twice continuously differentiable, by inverse function

2
- theorem, it follows that the transformation T is a C -diffeomorphism and its

- inverse is also a C 2-diffeomorphism. Thus 0.'s are twice differentiable as

functions of y.

Next, we claim that

0. I -- d%/d (8)

a" p0 10 - 1, 3¥d

To that end, set y 0, 0 0 = d = ( -, -p
py pT

for p=1,2,..., d. Here it may be noted that Y2 "'.' Yd can be considered

functions on U by making Y.(x) =Y.(x)). Let D Y denote the (dxd) matrix
ay. z

given by (Iy) . Then a simple computation shows that
i jk azk

[+ Nyl)(DY)A3p = aY (9)

aY.
" where I is the (d xd) identity matrix. Since 10(yl) - - Xi and dAi< ,

it follows that tI + (yl)D Y] exists and
1"

1 I [(I + (yI)DzYIII 1 - (d)

Hence by (4) and (9) we get

3 lap 1 - (dXi)

~~~~~~~~ .. . .. ..* * . .** * .** ....
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whence (8) follows.

Now for any smooth function g, by (7), we obtain the following:

ag d 3.a
ayl azl j=2 a zj

(10)

a0. ae. IL
1 1y 1z 1 3y

for i =2,..., d. Since 0(0) =0, 0'(0) =1 and 0.(y) =yj(y) on {y, 0}, it

follows from (10) that

d a
?: + a i(y) I (

1 i=2 1 y =0 z1 z =0

This establishes conclusion (ii) of the lemma.

Differentiating again, it can be shown that, for ij =1,2,..., d,

2 d2
+ . ag() + first order terms, (12)

ayiay. az iaz. j k P'= 1 az kaz1Yi j 1zi j k,t=I Zk Z£

where 6k = 6£k; since X _ , k'I-1, 10. p -i<l, by (4), (8) and the calcu-

lations leading to (12), it can be proved that

I ISkeI I - ,di)I (13)
6 -it 1 -1- (d),tO

Now from (12) we get

d 2 d d 2
Z a..(') ) [a ' 2gO

i,j=l 1 ayiay. i=l ( aYi ipj=l i [a .) + ai  j

+ first order terms (14)

wherc.e = Ti£=lai(' . In view of (13) it is easily seen that

..................... . . . ...........~~~~~....... ..... . ... .. .. ,... .. . ... .. ,.. ...... . .. ........ .,,



7

for any C = . d) in i ,

d 4Md3

i~ ~ 1 I - d)

Since dXp < , we have from (4) and (15),

d (.d 3  [ 2
4Md 1C12> 0(a. + j C - [a 1-(d 0  - ]1 > 0

for any r 00. It may be noted that there are no terms of the form q()g(.)

in t12), and hence in (14). Thus L, given by the right-side of (14), is

tniformly elliptic (in the variables zlz 2 ... , Zd). This completes the proof

in the special case.

2In the general case, since Y EC b G), there ex'sts a constant K such

" that 2

.. Yi*-2i I , I I sK.
". k 1  a0kdz

K1  aChoose K large enough that K--< - Note that the diffusion corresponding3.
8Md1

to (L,.J) is also the diffusion corresponding to (L,KJ)

Set 1 Kz1 , z. = z., j=2,..., d; Yj(z) = Ky (z) for zE 3G. It is

then easily seen that the general case is reduced to the previous case with

the new ellipticity constant a0 (KAl); also J in the z-coordinates is trans-

ormd() in the z-coordinates. The lemma now follows
A i=2 j A

b.. J

in the general case from the special case considered previously. El

W, can now state our first theorem.

'heorem I. Let Conditions I hold; let ., L., .1, .1, T he as in Lemma 2. Let
A

{P,: yc-m be the diffusion corresponding to (L,J). Let T: S2-+9 be defined
A A

by (Tw)(t) ='I(w(t)). r is a homeomorphism on Q. Set P =P T, where y=T(z).
z y

.......................... '
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Then {P z cG7 is the diffusion corresponding to (,j

Proo f Let B t a{X(s): O:5s! t} be the natural filtration in S1. If EESts
A A-1. 2 dnote that TIE, T EE B8t Let f cC (JR ) be such that 3f ?!0 on 3G. Define T

-1
by setting f(y) =f(T' y). Note that Jf(y) =Jf(z), where y =T(z); consequently

Jf 0 on XG. Hence

t

-F(X(t)) f[LI G .(Lf)Ij(X u) )du
0

is a P1 -submartingale (with respect to 8 t).

Note that by Lemma 2

[I .Lf)(TX(t,w)) [I IG*(Lt:)](X(t,w))

for all t and all w ES. Consequently, an elementary argument involving change

of variables yields that

t

f(X(t)) - R[IC (Zf)](X(s))ds
0

is a 1P -subma rt inga Ie. TIhis completes the proof.

2* Remark. Let Conditions 11 hold; in addition, let Y.c ~C(3G). Let T be de-
J

fined as in (6). Since 0(0) =0, the calculations leading to (12) show that

for 2-,i,j:5d, -i g on aG. Consequently, analogues of Lemma 2
ayiy i JzI 3zj

and Theorem I hold in this case with .1 given by (2) (in the y-variahles) and

Hereafter, 1, and .1 will be as in (1) and (2), that is, in the x-variables.

* We need a few lemmas.

*Lemma 3. Let Conditions I or 11 hold; let 0'x xc G1 be the diffusion corre-

*sponding to (1,1). Let U be a bounded open set in G Then sup E Ii0

*. . . . .. . . . . . . . . . . . .
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and sup Ex((n)) < 0, where is as in (3) and n= inf{t- 0: X(t) U}.
x( l

2 -q
Proof. Let hECb(G) be such that h(x) = e1 for x=(x 1 .... xd) in U and

q is a suitable positive constant so that Lh>_l in U. Note that Jh_>q>O on

"G n i. By (3b) and optional sampling theorem, for every T >0

nuAT nuATI: x [h(X(nuAT)) - h(X(0)) - f [IG-(Lh)](X(uJ)du - f Jh(X(u))d&(u)] = 0 (16)
0 0

for xc:U and X(0) =x. Since h is bounded, Lh -1 in U and Jh >0 on 3G, by (16)

and monotone convergence theorem it follows that sup hx(I <o-. Again, since
xcU

h is bounded, Jh ., q >0 on 3G n U and Lh >0 in U, by (16) and monotone conver-

gence theorem it follows that sup Ex(VI(U)) <o.
xf-U

1ix 4LG. For xG such that x #, define

d (x.-.ij(x. - ).
A()a..j(x) 1 2

d d
B(x) = W a.(X), C (x) = 2 b 1(x

i=i=

For r >0, define

B(x) -A (x) +C (x)
%(r) u

'uT~rA,(x)

• B(x) -A (x) +C (x)8 (r) = inf

Ix-_1=r A r(x)

Iet c >0. Define for r -c,

r I _ r l

(r) - 0 (u)du I (r) =f - (u)du
C C

r r
I,(r) = f exp(-T (u))du , , C(r) f cxp(- I -C (u))du

c c c C

and let fc, (X) - , (Ix-1) and f (x) : c (Ix- I)

. .. o .(

°. °. ,,°= .. .. . . ..... . . . . ." . . . °. • . .-- , , •,•,-. ° ° . . -° .

* . "°. .-. * , " . " • = - " ' 6 " ° . . . - - • " a
.. .- , .. ,-v .- .-- : .- v.. -... . .-. .• .,': ." . : ."..-: ". ... v.% ';.- '- .....- ..- . '.0 * .
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Iet H! be a real valued twice continuously differentiable function on

(0,-), and let h(x) H(Ix-CI). Then it is easily seen that for Ix- I >0,

2Lh(x) = A C(x)H"(jx - 0) + H'(Ix-1)(B(x) - A (x) + C (x)) (17)

S=X -x )I

Lemma 4. Let Conditions I or II hold; let C l Gbe fixed. Let c and n be

fixed real numbers such that c<n; let xEGbe such that c<Ix -0 <n; and

let i = inf{t >0: IX(t) - = c or n}. Then

F (x- )) 1 n
-+ Ex[f f (X (u))d(u)(S (n) + F (n) X 0

!5 I x (T DB(C:n )  < 'T DB( :c))

T Ix - 01) [f
<c'Lr, + Ex[ if ,(X(u))dE(u)] , 18)

* where for a closed set K in G, iK = inf{t- 0: X(t) ,KI.

Proof. Note that, by Lemma 3, T <- a.s. P . We apply (3b) to the functions
Pro. oetht b ema3 n x"

a nd f and proceed as in the proof of Lemma 2.1 in Bhattacharya and

Ramasubramanian (1982); finally an application of the optional sampling

theorem yields the lemma. We omit the details. El

Remark. Suppose 1, transforms smooth radial functions into smooth radial

functions. Further, let J = . Also, let = 0 for simplicity. Then
I

A 0x(x) and B(x) +C0 (x) are easily seen to be radial functions; consequently

* E -. Also Jf J if-0 on aG. Hence (18) becomes

- '°C xl 0, < "l (19)

F (n) =x TaB(0:n) <= (19),0(n
-c' -1c-o(n)

............................ .. ... ..

. *,. * *. . .*.v* * % .. .. -.- .... -. . ..- .. ...... ... ..... .. :- . . ..-. , . -. .
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Since L transforms radial functions into radial functions, by (17), it can be

seen that solving Lh(x) =0 in c< Ixl <n is reduced to solving a (one-dimen-

sional) second order ordinary differential equation in the interval (c,n).

The latter can be done easily, and (19) thus gives the solution to the problem:

Lh(x) = 0 for c< xl <n, Jh(x) = 0 for xE3G,

h(x) - 1 for lxi = n, h(x) = 0 for lxi = c.

In the general case, for c DcG, Px(TaB( :n) < T aB(:c)) is bounded above

and below by similar radial functions (which are harmonic for an elliptic

operator which transforms radial functions into radial functions), plus cor-

rection terms depending essentially on the boundary conditions. (cf. see [1]

and 12].

We are now in a position to prove our main theorem.

Theorem 2. Let Conditions I or II hold, and let CEaG. Then for any n >0

and any x such that 0<Ix-41s n,

lim Px(TB(C:n) < B: = 1 (20)

Consequently, the diffusion does not hit a point on the boundary specified in

advance.

Proof. (i) Let Conditions I hold. In view of Theorem I it is sufficient to

consider the case J In such a case note that Jf E0 on G. Then, asax1  -c, C

_. ( -
- I as c + 0 for any n > 0 and any 0< Ix -C l n, (20) follows

F cr(n)

from (18).

(ii) Let Conditions 1I hold. Let x G be fixed and x 1. Let n>0 be

fixed. Let E >0 he given. Choose c >0 such that

X"!
NN A.
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F IOx - 0) (1

F (n) >L1 0(1

Note that constants r.j, j= 2,..., d can be choscn so that

A
*.if C y M a 0 for c < J- !5n, y _ aG, (22)

where

A d
J = J + Y .. (.P

i,j=2 1 a

c A
Let Qc be the diffusion corresponding to (L,J), starting at x. Note that, by

a Girsanov-type theorem (p. 468 and p. 453 of Nakao and Shiga (1972)),

dC d d
1P . exp{ i .. 4t)- ~ ~t1

c't dP x t ~j j=2J
tj~(() YrCt}

where (B 2(s),..., B d(s)) is a (d -1) dimensional P x-Brownian motion indepen-

dent of F(t).

Write A = {T BB( :n) < Ta I:) and At = Q(T B() At) < LT BB(: ) At) 1.

A
By (18), (21), (22) applied to the (L,J)-diffusion, we get

Q(c A) > (I - e)
x

Consequently, Q x (A t) > (I -ce); and hence

fA t C dP X> (1 - )(23)

Note that PxL'ct > 1) -0 as t Hence (23) implies that lirPn (A t) > (I U

t-~
SThus VP (A) > (1 - r), whence (20) follows. This completes the proof. n

We now give two ap~plicationls.

Co ro I a r.5. Let Conditions I or tI hold. L~et D) be a hounded open set in G

satisfying an exterior cone condition (in Z'i) and such that aD n3G is a finite

set. Let T i jf (it 0 X Lt) 0 1). Then T i s cont inuous P - i.s. for any x D.
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Proof. Set T' = int'{t -z0: X(t) ii}. It can be seen that T is upper semi-

continuous and that T' is lower semicontinuous. herefore, it is sufficient

to prove that P x(T=') =1. Since,by Theorem 2, P x(X(T) c3G) =0, it is suf-

ficient to prove that P (T' >0) =0 for any yE3D, y1SG. Because of they

0-1 law, it is sufficient to prove that P (T' >0) #1 for any yED, y 0G.Y

This now follows from the exterior cone condition and the support theorem of

Stroock and Varadhan (1979, Exercise 6.7.5). 0

Corollary 6. Let Conditions I or 11 hold; let pE-0. Let D and T be as in

the preceding lemma. Let f,g,h be bounded and continuous functions respect-

ively on i), D, G. Then

T T

u(x) = E g(X(T) - f f(X(s))ds - f h(X(s))d (s)]
x 0 0

is continuous on D.

Proof. In view of Lemma 3, note that u is well defined and bounded. By the

preceding corollary and Feller continuity, the corollary follows. 0

Remark. Note that u defined as in the preceding corollary is the unique so-

lution to the boundary value problem:

Lu= f on D, u= g on 3D, Ju= h on DG;

that is,

tAT tAT

u(X(t AT)) - f f(X(sj)ds - f h(X(s))dC(s)
0 0

is a I' -martingale, and u = g on DD. If D is as before and is connected,

f>0) in D and if u(x) =0 for some xeD, x JG, then by the preceding corol-

lary and Lemma 2.3 of Bhattacharya (1978) it follows that u = 0 in iT.

-~~~~~~~~~~~~~~~.-...'..'.%=............o.. ...-.....-. ......-. o.....-.-...,...'......." -.... - ... . .. , .....-
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